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Abstract. For a Brownian particle moving in a succession of independent random hops with 
no local directional bias, its expectation position is shown to be constant in time, even when 
the hopping statistics vary from point to point. This gives rise to a simple sum rule on the 
probability density w(r ,  t )  of the particle. For a position-dependent diffusivity D derived 
from such a locally unbiased random process, this sum rule is shown to be consistent 
with the relation ( i ) j  = -grad(Dw) as the appropriate generalisation of Fick’s Law, but 
inconsistent with the alternative form (ii) j = - D grad w often used. Properties of w derived 
from (i) are developed, and its applicability to diffusion processes in real solids is discussed. 
It is shown that the sum rule also holds in the presence of absorbers, and in some cases can 
give eventual absorption probabilities without the need to solve the full time-dependent 
problem. 

1. Introduction 

For some time there have been two alternative interpretations of the term ‘diffusivity’, 
denoted here by D following majority usage. In cases where D depends on position, 
these give rise to two alternative forms for the corresponding diffusion equation, which 
can give qualitatively different results. Accordingly we need criteria to decide which 
equation (if either) should be used in any given case. In the present paper we discuss a 
simple extension of the Chandrasekhar ‘random flights’ model of Brownian motion 
under no external forces. This gives rise to a simple sum rule on the particle probability 
density, based on the fact that the expectation particle position remains constant in time. 
Although the sum rule is rather intuitive, it does not seem to have been formally stated, 
nor its implications noted. For diffusion processes to which the model does apply, the 
sum rule gives a clear indication that one of the diffusion equations considered is 
definitely incorrect, and hence for these processes at least it helps to resolve the problem 
of deciding which equation to apply. 

The sum rule is also of interest in its own right, since it still applies when absorbers 
are present. It could be used to monitor the accuracy of numerical calculations, and in 
some cases it also gives direct answers to questions about absorption probabilities (a 
simple example is given in 0 7). 

0953-8984/89/243801 + 20 $02.50 @ 1989 IOP Publishing Ltd 3801 
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Although the formalism used is general, only applications to solids will be considered 
here. In many diffusion processes, the migrating particle motion consists of an irregular 
statistical part superimposed on a systematic motion through the solid induced by local 
vector fields. For solids these fields are usually gravitational or electric. Usual practice 
is to identify the irregular component as ‘diffusion’ and the systematic component as 
‘drift’. In cases where the diffusion statistics are independent of position there is no 
difficulty in identifying the separate contributions of these two components. If the 
diffusion statistics do depend on the position of the migrating particle, however, there 
can be a corresponding drift contribution additional to those of external fields. For the 
first treatment given in the present paper, we consider only simple systems in which 
there are no external vector fields present, However, external scalar fields (in particular 
temperature gradients) are considered. 

2. Sum rule for locally unbiased Brownian motion 

The ‘random flights’ model of Brownian motion (Chandrasekhar 1943) has formed the 
basis for many studies of diffusion. The trajectory y of a migrating Brownian particle M 
is taken to consist of successive displacements (hops) h l ,  hZ,  h3, I . .. The starting point 
of M is ro, so that its position vector r, after i hops is given by 

r,  = ro + hl  + h2 + . . . + h , .  (2.1) 

Suppose that M has reached r o n  its last hop. The probability density V ( h  1 r )  for the next 
hop h is taken to depend only on r ,  and to be otherwise independent of the previous 
motion of M. It is also taken to be ‘unbiased’ in the sense that the expectation value ( h )  
is the null vector. Hence we assume the relations (with h = 1 h 1 )  

j d 3 h  yl(h/r)  = 1 (all r )  

j d 3 h h y ( h l r )  = 0 (all r ) .  (2.3) 

Let wi(r) denote the probability density for the position vector of M after i hops. Then 
we have 

W , + ~ ( T )  = 1 d 3 r ’  y(r  - r’ lr’)wl(r’) .  

Let ( 
pendent single-particle migration paths y. Then we have 

) denote expectation values taken over the whole ensemble E of possible inde- 

= / d 3 r r / d 3 r f  ~ ( r -  r’jr‘)wi(r’) 

= I d3r ’  w i ( r ’ )  d3r rV( r  - r’ lr’)  I 
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d3r’  wi(r’) d 3 h  (r’ + h ) q ( h l r ’ ) .  (2.5) =! ! 
Using (2.2) and (2.3) this becomes 

( r i + l )  = d3r’  (r’  + O)wi(r’) = (ri). (2.6) 

By repeated recurrence this gives 

( r , )  = ro (all i) . (2.7) 

So far we have followed the Chandrasekhar model in which the hop index i was taken 
proportional to time t. We now introduce into the Brownian motion an additional time 
structure in the form of a position-dependent mean hop rate v(r) defined as follows. 
Suppose M arrives at r at time t. We now take the dwell time z before its next hop to be 
a random variable, which is independent of t and depends only on r ,  being otherwise 
independent of the previous hops of M. Let f(z I r )  d z be the probability that the dwell 
time at r lies between z and z + d z, where f(zlr) is supposed differentiable in z. Then 
v(r) is defined to be the reciprocal of the expectation dwell time ( z ( r ) )  and is given by 

Because of the variation of dwell time with position, there is no longer a one-to-one 
correspondence between time t and number i of hops, so that the number of hops in a 
given time depends on the particular path y taken by M. Averaging over all possible y 
in E ,  let Wi(t) be the probability that, in time t, M makes exactly i hops. Then the 
positional probability density w(r,  t )  of M at tis given by 

w(r, t> = C, Wi(f)wi(r) (2.9) 

so that at t the expectation particle position (r( t ) )  is given by 

(r(t)) = 1 d 3~ rw(r, t )  = 2 Wi( t ) ( r j ) .  
i 

Using (2.7) this reduces to 

(r(t)) = d 3 r  rw(r, t )  = ro (all t), i 

(2.10) 

(2.11) 

Relation (2.11) is the required sum rule on w(r, t). Because of the assumed dif- 
ferentiability off( z 1 r )  with respect to z, it can be written in the alternative form 

d 
d t  
- (r( t ) )  = 0 (2.12) 

which is more appropriate when we are only given an initial probability distribution for 
M and not a known starting point. In the particular case of spatially uniform diffusivity 
the sum rule has been noted before (p .  168 of Reichl 1980) but not apparently as the 
general result given here. 
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To summarise, the assumptions made in deriving this result are: 

The individual hops are unbiased in 
the sense specified by (2.3).  ( 2 . 1 3 ~ )  

The hopping process is Markovian in that 
both the space and time statistics of the 
next hop depend only on the present position 
of the particle and not on its previous 
history nor explicitly on the time. 

(2.13b) 

Both the above conditions are necessary for the foregoing argument to be valid. In 
particular (2.13a) by itself is not enough. (The authors are indebted to one of the referees 
for pointing this out, and thus enabling them to replace an earlier incorrect derivation 

What we have shown is that (subject to assumptions (2.13)),  irrespective of other 
details of the positional dependence of both the spatial distribution (as given by qj(h I r ) )  
and the time structure (as given by f (  z I r ) )  of the local hopping process, the expectation 
position of the migrating particle remains constant in time. 

It remains to consider to what extent this model is applicable to real diffusion 
processes in solids. It seems reasonably well established (at least for low densities of the 
migrating species) that most of the modes of diffusion through solids can be represented 
as independent hopping processes satisfying (2.13b)-for a general discussion see for 
example Manning (1968). Correlation effects can be taken into account by reducing the 
effective local hop rate v(r) by the usual correlation factorf(cf. p 75 of Manning 1968) 
without affecting the basic argument. 

Assumption (2.13a) is more difficult, and in applications must be justified on a case- 
by-case basis. This point is taken up again in 0 6 .  

of (2.12.) .) 

3. Diffusion equations for locally unbiased Brownian motion 

3.1. Diffusion in an unbounded region 

Consider a particle migrating through a solid by Brownian motion in the absence of 
external vector fields. The motion is not, however, supposed homogeneous, so that the 
diffusion rate may vary from point to point. 

At any point r a t  time t, letj(r, t )  denote the net probability transfer current density 
of the migrating particle-cf. for example, p 62 of Stratonovich (1963) or p 72  of Risken 
(1984). Conservation of probability then gives the relation 

awlat = -divj. (3.1) 
To get a diffusion equation equation for w in terms of t ,  we need a second relation 

between w andj. For Brownian diffusion, which is locally unbiased in the sense already 
described, there are two alternative forms, both extensively used. The first (Seitz 1951, 
Crank 1975, de Groot and Mazur 1983, Manning 1968) is 

j = - D F  grad w 

a w l a t  = div(Dp grad w). 

(3.2) 

(3.3) 

giving the diffusion equation 

Here Dp(r) is called the diffusivity or diffusion coeficient at r. It is here given the 
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suffix F because (3.2) has the same form as the Fick equation for diffusion through a 
homogeneous medium (diffusivity independent of position). The alternative relation to 
(3.2) is given by equating to zero the drift term in the Fokker-Planck equation (Risken 
1984, Feller 1971, Montroll and West 1987) to give 

j = -grad(D2w) (3.4) 

resulting in a diffusion equation of the form 

awlat = V2(D2W). (3.5) 

The quantity D2(r) is defined as the limit of the second moment of small displacements, 
and is also called the diffusivity, For h small but finite, a first approximation for D2(r) is 
given by 

D z ( r )  = Qv(r)  1 d 3 h  h 2 q ( h I r )  

where v(r )  is defined by (2.8). 
For homogeneous media where D 2  is independent of r ,  then DF = D 2  and both (3.2) 

and (3.4) reduce to the usual Fick equation, so that there is no inconsistency. For an 
inhomogeneous medium with a position-dependent D2(r) ,  however, equations (3.2) 
and (3.4) are inconsistent and give qualitatively different results. Moreover, for a given 
D2(r)  there is in general no way of choosing DF(r)  to remove this discrepancy. To see 
this, consider a case in which w(r,  t )  ultimately tends to a limiting steady-state form 
w*(r),  as t 4  CO, The necessary and sufficient steady-state condition is 

j =  0. (3.7) 

Relation (3.4) then gives immediately 

const 
w*(r) = - D 2 ( r )  # ‘Onst 

whereas the only possibility from (3.2) is 

w* = const (3.9) 

which is inconsistent with (3.8) whatever the functional form of DF(r).  It follows that for 
a diffusive motion satisfying the condition (2.13~)  of no local bias, at least one of (3.2) 
and (3.4) is definitely wrong. 

The dilemma of choosing between (3.2) and (3.4) has been noted by van Kampen 
(1981, p 291) and discussed in detail by Landauer (1978,1983) and Landsberg (1984). 
In these treatments the discussion is complicated by the presence of drift terms produced 
by applied electric fields. These make it difficult to distinguish the underlying physics 
from those aspects which are purely statistical. For the particular case of locally unbiased 
diffusion, it turns out that the sum rule already derived can be used to show that it is 
relation (3.2) which is (except fortuitously) incorrect. 

We should here note the argument of Manning (1968) that a position-dependent 
diffusivity always induces a local bias. If true, this would make inconsistent our sim- 
ultaneous assumptions of no bias and position-dependent D. However, Manning only 
considers spatial variations of D which arise from a corresponding variation of the heights 
of the energy barriers over which the diffusing particle must hop (cf. figure 1-9(c) of 
Manning 1968). Clearly if a particle is to hop out of a potential well with one side higher 
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than theother, the hop probabilities will be biasedinfavourofthelowerside. Forphysical 
processes of this type, therefore, Manning's argument is clearly correct. However, as 
is shown in 0 6, real physical systems do exist in which a particle executes Brownian 
motion which simultaneously satisfies the conditions of position-dependent D and also 
no local bias in the strict sense of equation (2.3), It is to such systems that the results of 
the present discussion apply. 

3.2. Region restricted by a repecting boundary 

Since no diffusing particle can cross a reflecting surface Sref, the corresponding reflecting 
surface boundary condition there is 

n.j=O (3.10) 

where is the unit vector normal to Sref. Even in cases where (3.4) does hold exactly 
away from Sref, the sum rule (2.7) is in general no longer true. This is most easily seen 
by considering the steady-state function w* in the one-dimensional case where there are 
reflecting surfaces at x = 0 and x = L. Then (3.8) becomes 

and hence 

(3.11) 

(3.12) 

irrespective ofxo. In (3.11) and (3.12) it is assumed that the integrals converge so that a 
limiting w* actually exists. 

The outer surface of a solid usually acts as a reflecting surface unless there is appreci- 
able evaporation and/or sputtering of the diffusing atomic species, or the formation of 
a segregated surface phase. In the latter case the surface becomes (at least in part) an 
absorbing boundary. The general case of an absorbing boundary is discussed in § 7. 

4. Use of the sum rule to discriminate between diffusion equations 

Equations (3.2) and (3.4) are not the only possibilities for diffusion in the absence of 
external vector fields. However, they are the ones most commonly assumed, particularly 
when not enough is known about the detailed physics of the migration process of the 
Brownian particle. In the present section we show that for processes that do satisfy 
conditions (2.13) (so that the sum rule (2.12) holds) and also have position-dependent 
D, then (3.2) is definitely wrong. Equation (3.4) is not necessarily correct in every such 
case, but it is at least consistent with the sum rule, as shown by the following argument. 

For the moment we assume that the particle's motion is unrestricted by confining 
surfaces, so that it is free to move over all space (this assumption will be relaxed in § 6). 
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Also we assume that both D, and D2 are bounded everywhere by some maximum value 
DM, so that we can write 

To find bounds on w and j at large distances, we consider the case where the particle 
starts within a fixed distance a of the origin, i.e. 

Then, for given t ,  we have 

which gives the relations 

and 

lim $-j(r, r )  = o (0 < A). 
r-+ x 

(4.5) 

Apart from the condition (4.21, w(r, 0) is arbitrary. Let Zdenote the region interior to a 
large spherical surface S of radius R ,  centred at the origin. Then we have 

( T )  = d 3 r  TW = lim ( T ) ~  
R-+= 

where 

( T ) ~  = [d3 r rw .  (4.7) 

Using (3.1) we have 

d [d ’ r r -=  d W  - / z d 3 r r d i v j = / z d 3 r j -  l s d S r ( R . j )  (4.8) 
a t  

- ( d R  = d t  

where is the unit outward vector R / R  normal to dS. Using (4.3) we have 

f 
dS r(C8 * j )  = 0[4?t-R3 exp( -R/2D,t)2] -+ 0 (R-. (4.9) 

JS 

so that in the limit we need only consider the first term on the RHS of (4.8). If we assume 
relation (3.4) then we have 

d3rgrad(D2w) = ( R  -+ X I  (4.10) 

so that we have 
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d d 
- ( r )  = lim - ( (T)~  = 0 
d t  R+= d t  

(4.11) 

in agreement with (2.12). Hence the form (3.4) for the diffusion equation automatically 
ensures that the sum rule is satisfied. In contrast, if we assume relation (3.2) we get 

d 3 r  [grad (DFw) - w grad D F ] .  = - [  (4.12) 

The integral of the first term vanishes in the limit R + from (4.3) as before, giving 

d 
(4.13) 

Hence for a w(r,  t) that is arbitrary (subject only to (4.2)) it follows that d(r)/dt can only 
be zero when 

grad DF = 0 

i.e. 

DF = const. (4.14) 

Hence, the sum rule (2.11) cannot be satisfied by a relation of the form (3.2) when DF is 
position-dependent. It follows that for unbiased diffusion of the type considered here, 
the sum rule shows that (3.2) must be wrong. Hence, in cases where (3.2) and (3.4) are 
the only possibilities, the foregoing argument points to (3.4) as the generalisation of 
Fick’s equation when the diffusivity is position-dependent. 

In one dimension, equation (3.6) takes the form 

D = v(h2)/2. (4.15) 

In the case of one-dimensional symmetric hops between lattice planes with constant 
spacing h and position-dependent v we can show directly (without invoking the sum 
rule) that the continuum limit leads unequivocally to (3.4) as the correct diffusion 
equation. The argument is given in Appendix 1. (The result has been obtained earlier 
(Collins 1981) but this derivation is much shorter.) Accordingly the remainder of this 
discussion will be devoted to the properties of solutions of (3.4). For this reason we now 
drop the suffix 2 on D. 

5. Some properties of the generalised diffusion equation 

For cases where (3.4) (and hence (3.5)) is correct, we may note some properties of the 
resulting w which for position-dependent D are qualitatively different from those with 
constant D. From (3.4) we have 

j = -D grad w - w grad D. (5.1) 
It follows that even when w is spatially uniform, a non-uniform D induces a progressive 
transfer of sampling probability w from regions of high D to regions of low D. It is 
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Figure 1. Typical Brownian sample paths. (a) 
Spatially uniform diffusivity D ;  constant gravi- 
tational field in the negative x direction. (6) No 
gravitational field; D increasing monotonically 
with n. D increasing 

important to note that this is purely a time-sharing effect-it is not the result of a non- 
zero contribution uE to the ensemble average drift velocity d(r)/dt of the particle, of the 
type induced by an external gravitational field or (for a charged particle) an electric 
field. (d(r)/dt does exist in general because of the assumed differentiability off(t 1 r) with 
respect to t, even in a mathematical model where individual paths y are discontinuous 
sequences of discrete hops.) 

The difference is shown schematically in figures l(a) and ( b ) ,  where a diffusing 
particle starts from rest at 0. In figure l (a)  a constant gravitational fieldg in the negative 
x direction induces a corresponding negative value of ( u ~ ) ~ ,  so that the particle sample 
paths are biased in the direction of g as shown. As a result, the region of high probability 
density w moves steadily to the left and we have 

d 
d t  
- (x) < 0. 

In contrast, figure l (b)  illustrates a case of the type under discussion, where there is no 
external field acting but D increases steadily withx. The individual sample paths are now 
unbiased in direction and their spatial structure is symmetrically distributed about 0 (the 
four shown would have equal probability). The increasing asymmetry of w about 0 arises 
from the asymmetry in the times taken to traverse the different paths in figure l(b). The 
marks on each path correspond to equal time increments. In regions of lower D the 
particle is (on average) moving more slowly, so that the marks are closer together. 
Consequently the sampling probability density w for the particle along these paths is 
higher for x < 0 (low D )  than for 0 < x (high D ) ,  simply because the particle spends 
more time in the low-D paths. The effect increases with t as more paths find their way 
into the low-D (x < 0) region, resulting in a steady transfer of sampling probability to 
the left. It is only in this sense that the increasing asymmetry of w can be described as a 
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'drift' since, unlike the case of figure l ( a ) ,  ( x )  remains zero. This is true since relation 
(2.11) still holds, which here becomes 

( x )  = d x x w ( x )  = 0 g = o  (all t) .  (5 .3)  

The reason that ( x )  does not move to the left into the high-w region is that, although 
the particle is more likely to be found to the left of 0 than to the right, if it is found to the 
right of 0 then it will on average be found further away from 0 because it has been moving 
faster. Hence the contributions to ( x )  of the regions x < 0 (large w but small 1x1) and 
0 < x (small w but large lx 1 )  exactly cancel, giving relation (5.3). The limiting case of 
this occurs when absorbers ( D  = 0) are present, illustrated by the second example 
discussed in 8 7. 

The second feature of systems where D is spatially non-uniform is that if D decreases 
smoothly to zero in any region, there may not exist any limiting steady-state probability 
density w*(r) .  For example, consider the one-dimensional case of a particle diffusing 
along the x axis between reflecting boundaries at x = 0, x = c under no external forces 
and a non-uniform diffusivity given by 

D = D 0 ( x / c ) "  (0 < x < c). (5.4) 

A / x "  ( A  const). (5 .5)  

If it exists, w * ( x )  must have the form given by (3.7), i.e. 

However, since the integral 

loc d x/x" 

converges for ,U < 1 and diverges for 1 5 ,U, it follows that a ~ " ( x )  correctly normalised 
to unity over 0 < x < c exists only for ,U < 1. For the divergent case 1 5 ,U the inter- 
pretation is that as t increases, the sampling probability accumulates nearer to x = 0 as 
more and more sample paths get trapped for long periods in the very slow region where 
D is nearly zero. However, for the same reason the rate at which this happens itself 
becomes progressively dower, and for 1 5 ,U this latter effect is dominant and prevents 
a limiting w " ( x ) .  

6. Applicability of the model to diffusion in real solids 

So far the analysis has related to the migration of a single isolated particle. For most 
practical applications we need to consider the simultaneous migration of N such 
particles, where N is large enough for fractional fluctuations (of order 1 / d N )  to be 
negligible, so that w and j may be scaled to give respectively the macroscopic number 
density n and current density J according to the relations 

n = N w  (6.1) 

J = Nj. (6.2) 

However, n must be small enough to justify the assumption that each migrating particle 
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X- Figure 2. Random depth relocation of atoms 
by inhomogeneous ion beam parallel to solid 
surface Z. 

is unaffected by the N -  1 others. For diffusion through a host species of atomic 
density p ,  this implies the relation 

n < p .  (6.3) 

Since the total number of host atoms in a typical solid specimen is of order 1020, we 
can take N - 1014-1016 to satisfy (6.3) and still keep l / q N  negligibly small. Assuming 
that (6.3) is in fact satisfied, then for systems satisfying conditions (2.13) the sum rule 
takes the form 

(r( t ) )  = (1/N) 1 d3rrn( r ,  t )  = c (const) (6.4) 

and equations (3.4) and (3.5) become 

The first application we consider is rather special but of some technological 
importance. It occurs as a limiting case in the analysis of implant depth profiles in 
solids by secondary-ion molecular spectroscopy (SIMS) . The system considered is shown 
in figure 2. A small number of implant (a)  atoms is distributed inside a solid matrix 
of host ( p )  atoms with a plane surface Z at x = 0. A beam of high-speed ions ( y )  with 
depth-dependent current density Z(x) is incident on the solid. Although the magnitude 
of Z varies with depth x ,  its direction is constant and parallel to Z. An a atom at Q 
which is struck by a y ion eventually comes to rest at some point Q’. Relative to a 
given Q, in general we expect the distribution of possible points Q’ to have a bias in 
the Z direction. However, its projection on the x axis must be symmetric about Q, and 
hence its probability density function q ( h  lx) is symmetric in h. (The q ( h  Ix) used here 
is analogous to the ballistic relocation function F(x, h )  introduced by Sigmund and 
Gras-Marti to describe ballistic relocation parallel to Z (Sigmund and Gras-Marti 
1980, 1981, Gras-Marti and Sigmund 1981).) For a given a atom, successive such 
displacements h (from different y ions) are clearly independent, and so here we have 
a one-dimensional case where both the conditions (2.13) are satisfied. 
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Consequently, provided that the a atoms are far enough from 2 to have a negligible 
chance of reaching it, the sum rule (6.4) is satisfied in the form 

(x(t)) = (1/N) 1% dxxn(x, t) = const (6.7) 
0 

where n(x, t) dx  now denotes the total number of a atoms lying in the depth layer 
(x, x + dx) at t. Hence, provided (h2) is small enough to justify a diffusion approxi- 
mation at all (cf. Collins et a1 1988) we expect n to satisfy the equation 

an/dt = a2(Dn)/at2 (6.8) 
with D(x) cc IZ(x) 1 .  In fact it has been shown (Collins and Jimenez-Rodriguez 1982; 
V = 0 in the notation used there) that in this particular case equation (6.8) can be 
derived directly from the integral equation for ballistic relocation. We describe the 
system shown in figure 2 as a ‘limiting case‘ because, in current experimental rigs, Z 
cannot be exactly parallel to 2. Also, in practice, implant location is affected by other 
factors. However, Z directions approaching grazing incidence on 2 are used in analysing 
the profiles of shallow implant layers, and calculating the effects of ballistic relocation 
alone helps to assess its importance relative to the other factors involved (Collins 
1986). 

More generally we seek to identify migration processes in solids which satisfy 
conditions (2.13) and also have a position-dependent diffusivity. These must involve 
a spatially inhomogeneous distributed energy source for the hopping particle M which 
produces a correspondingly inhomogeneous hop frequency v(r), without introducing 
appreciable asymmetry into the individual potential wells between which M hops. The 
most obvious candidates of this type are thermal and radiation-induced diffusion in 
which there are respectively spatial gradients of temperature and radiation density. 

For an atom M migrating through a solid by thermal diffusion, the hops consist of 
relatively sharp transitions between sites of local equilibrium. Between hops, M 
oscillates about a local equilibrium centre. The oscillations are not usually simple 
harmonic but can be characterised by a dominant frequency Yvlb - 1013 Hz. Typical 
values of v v l b / v  lie in the range 10- 1013 Hz. Typical values of v v l b / v  lie in the range 
10+ lo4 where v is deduced from measured values of D. It follows that successive 
hops of M are separated by an interval of between 10 and lo4 local oscillations, which 
will effectively remove any ‘memory’ of the previous hop. (The ‘immediate reversal’ 
possibility has already been dealt with within this model by scaling v by the correlation 
factor f.) Consequently we may assume relation (2.13b). The case of (2 .13~)  is less 
clear-cut. For present purposes, a temperature gradient may be regarded as having 
two opposite effects: 

(i) a spatial variation of Y leading to a j  directed from high to low T; 
(ii) an induced asymmetry in the hops, giving a j  contribution from low to high T. 
Effects (i) and (ii) are shown schematically in figure 3, where we consider interstitial 

diffusion of particles of type M parallel to the x axis when T increases with increasing 
x. Consider the oscillations of particles M1 and M2. M2 is hotter than M,, so oscillates 
faster and will (on average) jump sooner, producing a net contribution t o j  in the 
negative x direction (effect (i)) by the mechanism already considered. The second 
effect arises because atoms B are hotter than atoms A ,  and are oscillating faster in 
the y and z directions. Hence a temporary gap between B, and B2 (allowing MI to 
move to the right) is likely to occur earlier than a similar gap between A, and A2 
(allowing MI to move to the left). The result is an induced asymmetry in the hopping 
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Figure 3. Interstitial diffusion of particles M 
through a crystalline solid with a temperature 
gradient but no applied vector field. 

probability of M1 favouring hops to the right, and hence a contribution to j in the 
positive x direction (effect (ii)). In cases where (i) is dominant then both the sum rule 
(in the absence of reflecting surfaces) and relation (3.4) for D,  would be expected to 
be good approximations. On the other hand, if (ii) is dominant (the case considered 
by Manning (1968)) then we would expect (3.2) to hold (equation (5-11) of Manning 
(1968) with F = 0). In any given case a full discussion is needed of the kinetics of the 
energy transfer from the host atoms to the diffusing atoms, and we do not attempt it 
here. However, it is of some interest to investigate some of the features of systems 
where (i) is the dominant effect, and D is given by (3.4). 

In particular we consider the Soret effect of a diffusive mass transfer by a tem- 
perature gradient-cf. p 273 of de Groot and Mazur (1983). If D only varies with r 
because of its variation with T (via v) then (6.5) becomes 

d D  
J =  -Dgradn-n-gradT.  d T  (6.9) 

The usual assumption made in practice is that the variation of D with T does in fact 
arise from the temperature variation of v ,  i.e. through effect (i), justifying the 
assumption of form (3.4) for D in this case. For many solids, the variation of D with 
T i s  typically (Seitz 1951, Manning 1968) of the form 

(6.10) 
where T, = Q / k ,  is a constant threshold temperature for thermal diffusion: Q is an 
activation energy and kB is the Boltzmann constant. For ranges of T of most exper- 
imental interest, the variation of Do  is small and it can be taken as a constant. Using 
(6.10), equation (6.9) now becomes 

(6.11) 
For a finite solid without absorbers we may expect a limiting steady state with J = 0 
everywhere, when we have 

grad n* = -(n*Tc/T2) grad T (6.12) 
which integrates immediately to give 

n* L-X exp(T,/T) (6.13) 
independently of Do. For a solid with parallel flat faces S1 and S2 maintained at 
constant temperatures TI and T2 we have 

(6.14) 
irrespective of the distance between S1 and Sz. The time to achieve the steady state 

D = Do exp( - T,/T) 

J = -D[grad n + (nTc/T2)  grad TI. 

n T h ;  = exP[Tc(l/Tl - 1 m 1  
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1 1 a solid with gpposite faces at temperatures Tc/3 

I S , )  is,) and Tc/4 (from equation (6.13)). 

increases exponentially as T falls below T,, so in practice T I  and T,  cannot be chosen 
very small. The largest practical temperature range is typically (Tc/4 < T < Tc/3). 
Putting 

T I  = Tc/3 T ,  = T,/4 (6.15) 

we get n t  /nT = exp(4 - 3) = 2.7, which suggests that a 3 :  1 density ratio of the 
diffusant between the faces should be achievable. The spatial variation of n" in one 
dimension for case (6.15) and a linear temperature gradient is shown in figure 4. 

For the case of diffusion induced by spatially inhomogeneous radiation (particularly 
from a laser) much depends on the relative magnitudes of the excitation of the 
migrating particles and that of the host atoms. When the host excitations are small 
compared with those of the diffusing particles then effect (ii) will be correspondingly 
small compared with (i) and conditions (2.13) will effectively be satisfied. 

7. Extension of the sum rule to systems containing absorbers 

The sum rule also applies to systems containing surface or volume distributions of 
absorbers (but not, as noted in 0 3.2, when reflecting surfaces are present).This follows 
trivially from the fact that (provided the assumptions (2.13) are satisfied) the sum rule 
holds irrespective of the magnitude of local mean hop rate v(r). In particular it holds 
for arbitrarily small v(r). Since an absorbing site (trap) r, is one for which v(r,) -+ 0 
(i.e. the dwell time z(r,) + x) this is the required result. 

In a region containing absorbing material, at any time t the ensemble E of possible 
sanple paths consists of an absorbed set E,[t], which have already terminated on an 
absorber somewhere, together with an unabsorbed set E,[t], corresponding to motions 
in which the particle is still migrating. We can now write relation (2.11) in the form 

d 3r  rw(r, t )  = ro (7.1) 

where R denotes the total region of space (E ,  and E,) accessible to the migrating 
particle. (For example, if the only absorber present is a simple closed surface S and 
ro is inside S ,  then R is the region I interior to S ,  together with S itself.) 

Although relation (7.1) gives the most concise statement of the sum rule with 
absorbers present, it is not necessarily the best form to use in calculations. For most 
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purposes it is more convenient to rewrite (7.1) by separating the E,  and E,  contributions 
to ( r ) ,  as follows (for simplicity we treat only the case of absorbing surfaces; the 
extension to systems containing three-dimensional absorbing distributions is straight- 
forward). 

Let 2, denote the set of all absorbing surfaces present. At time t ,  let P(t) denote 
the probability .that the particle has already been absorbed somewhere on E,, and let 
p(ra, t )  dS, denote the probability that this absorption has occurred on the small 
element dS, of surface surrounding the point r, on one of the absorbers. Then we 
have 

Let w,(r, t )  d'r denote the probability that, at time t ,  the particle has not yet been 
absorbed and is located in the volume element d'r surrounding point r in R. Con- 
servation of probability then gives 

jR d'r  w,(r, t )  = 1 - P(t).  

The form (7.1) for the sum rule can now be replaced by the relation 

(7.3) 

1 dS, rap(r,, t )  + d'rrw,(r, t )  = ro. 
x a  R 

(7.4) 

If the particle is certain to be eventually absorbed (P( t )  + 1 as t-+ x )  and also (it does 
not follow automatically) if 

lim 1 d ' Y  rwu(r, t )  = 0 
R I+ = 

then relation (7.4) gives 

(7.5) 

where p*(r,) dS, is the probability that the particle will eventually be absorbed on 
dS,. 

In some simple cases, relation (7.6) by itself can give precise answers for ultimate 
absorption probabilities. This is shown by the following simple example. 

Consider the case (illustrated in figure 5 )  of a particle diffusing in the region R 
between infinite parallel absorbing planes So (at x = 0) and SL (at x = L).  At t = 0 the 
particle starts from rest at a point B at x = b. Then y, is a typical path from the subset 
E, still unabsorbed at a later time t. The problem is to determine the probabilities 
Po* and P z  that the particle will eventually be absorbed on So or S L  respectively. For 
simplicity we consider the usual case where the probability P* of eventual absorption 
of the particle is unity, so that 

(7.7) p* = Po* + p t  = 1. 

The diffusion process is assumed to be (as before) locally unbiased, but the diffusivity 
D is not necessarily spatially uniform nor even a function of x only. It is assumed to 
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IS,) IS,) 
I 

d+- Figure 5. Typical Brownian path for unbiased 
diffusion between two infinite parallel absorbing 

I 
I 

I 

I 
planes (prior to particle absorption). 

be non-zero throughout R (so that the particle cannot get trapped anywhere except 
So or S , ) .  For definiteness we assume some minimum value Dmin such that 

D m i n  < D(r)  (r in R) .  (7.8) 

Since the probability of eventual absorption is known to be unity in the uniform case 
D = Dmin everywhere in R ,  it follows that the same is true if (7.8) is satisfied. For finite 
L ,  (7.5) is satisfied and (7.6) here takes the simple form (integrated over y and z )  

0(1 - P z )  + LPT = b 

giving 

P i  = b/L  (7.9) 

irrespective of the detailed behaviour of D(r)  between the plates. Even in the case of 
constant D, which is relatively easy to calculate, this derivation of (7.9) is far quicker 
than the treatment usually given (for comparison this is summarised in Appendix 2). 

Even in cases where there is probability P* = 1 of eventual absorption, relation 
(7.5) is not trivial. For example, consider the limiting case (illustrated in figure 6) of 
the previous example in which L+ CO, i.e. the second absorbing surface S L  disappears 
from the system. For simplicity we again consider the case of constant D. The region 

Figure 6. Sample Brownian paths for unbiased 
diffusion near a single infinite absorbing plane. 
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R available to the diffusing particle is now the semi-infinite plane 0 < x. The Kelvin 
image method (see for example p 341 of Feller (1971)) gives the solution 

1 
J. 

{exp[-(x - b)2/4Dt] 
wu = 2V(nDt) 

- exp[-(x + b)2/4Dt]} (0 < x, 0 < t) (7.10) 

so that the probability P(t) of absorption on So before time t is given by 

+ O(t-”/”) (7.11) 
b 

i.e. 

P* = lim P(t) = 1 
t+ = 

(7.12) 

so that the particle is eventually absorbed on So with unit probability. At first sight 
this appears to imply that (x) + 0 as t + w, However, from (7.10) we have 

= b  (all t) (7.13) 

in agreement with (7.1). From (7.12), with probability unity any given sample path 
eventually ends at x = 0 like the ya shown in figure 6. However, the decreasing numbers 
of unabsorbed paths yu are exactly compensated by their steadily increasing distance 
from So measured by the increasing mean value (x), (= b/(l - P ) )  taken over E,[t]. 
The resulting distribution (an increasing component P(t)G(x), where G(x)  is the Dirac 
delta functions, together with a long ‘tail’ of decreasing total probability 1 - P(t) but 
extending to larger and larger values of x) is a limiting case of the w(x, t) asymmetry 
discussed in § 5. 

8. Summary and conclusions 

In this paper we have considered a class of Brownian motions modelled as Markov 
hopping processes with local symmetry but with position-dependent hop rate v ( r ) .  We 
have shown that all such motions involve a simple sum rule on the probability density 
w of the migrating particle, which remains valid in the presence of absorbers. Of the 
two forms of diffusion equation in current use for diffusion with no external vector 
fields but position-dependent diffusivity D, one (3.4) satisfies this sum rule and the 
other (3.2) does not. It follows that the two equations are inconsistent and lead to 
qualitatively different results. The axioms underlying the model have been shown to 
apply to some diffusion processes, and to be implicit in many diffusion calculations 
even when not expressly assumed. The form (3.2) due to Fick (and much more 
commonly used for diffusion in solids) has often been used in cases even when D(r)  
is calculated using essentially the same model as the one considered here, with which 
(3.2) has now been shown to be inconsistent. The conclusion of the present paper is 
that, in these cases at least, (3.4) should be used instead. More generally, in any 
particular case where D is a function of r the choice of diffusion equation must depend 
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quite sensitively on the mathematical model assumed. It seems quite likely that in 
cases of force-free diffusion in solids where the sum rule does fail, then neither (3.2) 
nor (3.4) will be adequate, and some more complicated equation must be used. 

In addition to its value in discriminating between the two diffusion equations, the 
sum rule has been shown to be a useful theoretical tool, particularly in assigning final 
particle distributions over systems of absorbers. 
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Appendix 1. Symmetric hopping between equispaced lattice planes 

Consider an infinite set of equispaced parallel lattice planes { s k }  {k = 0, + I ,  t 2 , .  . .) 
normal to the x axis, with separation h as shown in figure A l .  A particle M migrates 
parallel to the x axis by hopping randomly between the planes. From s k ,  M can hop 
directly only to S k - l  or S k + l ,  each with probability 1/2. The mean hop rate from S k  

is vk, so that if M is on S k  at time t ,  the probability that it has not hopped away at 
t + At is exp( - vkAt) .  Let Wk(t) be the probability that M is on S k  at time t. Then the 
probability currents going right and left from S k  are both V k W k / 2 .  Similarly the current 
going left from S k f 1  is vk+lWk+j/2. Hence the net current j k + l / 2 .  going right through 
the intermediate (virtual) plane S k + 1 / 2  is given by 

( A l . l )  

In the continuum approximation we replace j k ( t ) ,  V k  and Wk(t) by smoothly varying 
j ( x ,  t ) ,  v(x)  and w(x, t )  given by 

j k + 1 / 2  = i(vkWk - V k + l  W k + l ) .  

(A1.2) 

(A1.3) 

w k ( t )  = h W ( X k ,  t) .  (A1.4) 

Relation (A. 1) then becomes 

(2 /h) j (xk  f h / 2 ,  t )  = v ( x k ) w ( x k ,  t )  - v(xk + h)w(xk + h,  t ) .  (A1.5) 

We now put x k  = x + h/2  and expand vw in powers of h to give 
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4 + V k W h  
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I 
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a 
ax j ( x ,  t )  = - [2h2 v(x)w(x, t ) ]  + O(h).  

We now make the standard substitution 

v ( x )  = 2D(x)/h2 ( D ( x )  finite) 

and let h+ 0, when (A1.6) becomes 

j = - a(Dw)/dx 

which is of the form (3.4). 

Figure A l .  Unbiased hopping 
between parallel lattice planes with 
uniform spacing h hut non-uniform 
hop rates vk. 

(A1.6) 

(A1..7) 

(Al.8) 

Appendix 2. Diffusion with uniform D between two parallel absorbing planes 

We have to solve the equation 

dw,/dt = Da2w,/dx2 (A2.1) 

w, = o  (x = 0, L; 0 < t) (A2.2) 

(0 < x < L,  0 < t ;  D const) 

subject to the boundary conditions 

and the initial condition 

w , ( x ,  0) = 6(x - b).  (,42.3) 

We expand win terms of the functions sin(qnx/L) ( q  = 1 , 2 ,  . . .> which satisfy (A2.2). 
Relations (A2.1) and (A2.3) then reduce to 

x 

w, = (2,'~) I= sin(qnb/l)  sin(qnx/L) exp( - q ? n ' ~ t / ' ~ 2 ) .  (A2.4) 
q = l  

The probability current j L  into the plane SL  is then given by 
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jL = - D ( a ~ , / d x ) ~  
x 

= ( 2 n ~ / ~ 2 )  (-1)q+lqsin(qnb/L)exp(-q*n*Dt/L') (A2.5) 
q = l  

and the probability P2 of eventual absorption on S L  is given by 
m 

P t  =-/osdfj, =(2/n) 2 [(-l)q+'/q]sin(qnb/L) = b/L (A2.6) 

as required. (For the last step see for example p 38 of Gradshteyn and Ryzhik (1965).) 

q = l  
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